Intracellular pH transients of mammalian astrocytes.
نویسندگان
چکیده
Intracellular pH (pHi) is an important physiologic variable that both reflects and influences cell function. Glial cells are known to alter their functional state in response to a variety of stimuli and accordingly may be expected to display corresponding shifts in pHi. We used fine-tipped, double-barreled, pH-sensitive microelectrodes to continuously monitor pHi in glial cells in vivo from rat frontal cortex. Cells were identified as glia by a high membrane potential and lack of injury discharge or synaptic potentials. Continuous, stable recordings of pHi from astrocytes were obtained for up to 80 min but typically lasted for approximately 10 min. Resting pHi was 7.04 +/- 0.02 with a membrane potential of 73 +/- 0.9 mV (mean +/- SEM; n = 51). With cortical stimulation, glia depolarized and became more alkaline by 0.05-0.40 pH (n = 50). During spreading depression (SD), glia shifted more alkaline by 0.11-0.78 pH (n = 26). After stimulation or SD, glia repolarized and pHi became more acidic than at resting levels. Superfusion of the cortical surface with 0.5-2 mM Ba2+ caused glia to hyperpolarize during stimulation and completely abolished the intracellular alkaline response. The predominant pH response of the interstitial space during stimulation or SD was a slow acidification. With superfusion of Ba2+ an early stimulus-evoked interstitial alkaline shift was revealed. The mechanism of the intracellular alkaline shift is likely to involve active extrusion of acid. However, internal consumption of protons cannot be excluded. The sensitivity of the response to Ba2+ suggests that it is triggered by membrane depolarization. These results suggest that glial pHi is normally modulated by the level of local neuronal activity.
منابع مشابه
Intracellular calcium transients and potassium current oscillations evoked by glutamate in cultured rat astrocytes.
Glutamate responses in cultured rat astrocytes from cerebella of neonatal rats were investigated using the perforated-patch configuration to record membrane currents without rundown of intracellular messenger cascades, and microfluorometric measurements to measure the intracellular Ca2+ concentration ([Ca2+]i) and intracellular pH (pHi) with fura-2 AM and 2',7'-bis-(2-carboxyethyl)-5,6-carboxyf...
متن کاملIntracellular pH of astrocytes increases rapidly with cortical stimulation.
Modulation of intracellular pH is widely implicated in the control of cell growth and metabolism, yet little is known about intracellular pH and brain function. To determine how stimulation of brain may affect the intracellular pH of mammalian glial cells, rat cortical astrocytes were studied for the first time in vivo using pH-sensitive electrodes of submicron caliber. Stimulation of the corti...
متن کاملThe Impact of Astrocytes Morphology on their Ca2+ characteristics
Astrocytes, an abundant type of glial cells in mammalian brain and spinal cord, play an important role in regulation of neuronal network functions. During the last decade it has become evident that astrocytes can also be directly involved in modulation of synaptic signalling and synaptic plasticity, and that these astrocyte functions are related to the intracellular Ca2+ dynamics. Ca2+ signals ...
متن کاملSodium Signals
In the vertebrate central nervous system astrocytes are intimately involved in almost all aspects of brain function. Strategically localized between thousands of synapses as well as between neurons and blood vessels, they add their share to tissue architecture, synapse function, information processing and energy supply. Vital astrocytic functions like ion homeostasis and transmitter uptake at s...
متن کاملGABA uptake-dependent Ca(2+) signaling in developing olfactory bulb astrocytes.
We studied GABAergic signaling in astrocytes of olfactory bulb slices using confocal Ca(2+) imaging and two-photon Na(+) imaging. GABA evoked Ca(2+) transients in astrocytes that persisted in the presence of GABA(A) and GABA(B) receptor antagonists, but were suppressed by inhibition of GABA uptake by SNAP 5114. Withdrawal of external Ca(2+) blocked GABA-induced Ca(2+) transients, and depletion ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 6 شماره
صفحات -
تاریخ انتشار 1989